

Grace Weber gweber@usbr.gov 303-445-2327

Cathodic Protection Case Study: Parker Dam Spillway Gates

Grace Weber, M.S.

Materials Engineer, Materials & Corrosion Lab

Webinar Objectives

- General Cathodic Protection (CP) Design Process
 - What are the steps?
- Parker Dam Spillway Gate CP Case Study

What is CP?

- Problem: corrosion
- One mitigation method is cathodic protection
 - Galvanic (GACP)
 - Impressed current (ICCP)
- Past Webinars go more in depth on types corrosion and CP

Parker Dam Spillway Gate CP

- Parker Dam, CA (1938)
 - Colorado River, Lake Havasu
 - "Deepest dam in the world"
 - Powerplant- four units: 30,000 kW each

Coated structures and equipment – receiving the most severe exposures

- Spillway Gates (5), Penstock Roller Gates (4), Penstock (4)
- Scroll Case, Turbine Runner, Draft Tube, Etc. (4)
- Trash Rack panels
- Cathodic protection

 - Penstock Gates GACP (Complete)
 Spillway Gates ICCP (In Progress)

Parker Dam Spillway Gate CP

- ICCP for spillway gates
 - Extend service life of coating
 - Provide extra protection for underlying steel
 - ICCP beneficial for large surface area of 50' x 50' gates
- Parker Dam staff will install
- Reclamation Materials and Corrosion Lab – CP design & installation support

CP System Design Process

Grace Weber, M.S. Materials Engineer gweber@usbr.gov 303-445-2327

- 1. Contact us
- 2. What are your needs?
- 3. Project Management Plan
- 4. Design Data
- 5. CP Design

Project Management Plan

Project Management Plan

- Contacts
- Objectives
- Scope/tasks
- Schedule

- Budget
- Roles & responsibilities
- Risk management

Project Management Plan (PMP)					
Job Title: Parker Dam Spillway Gate CP	Date Submitted:				
Accounting String (Fund and WBS):	WOID (if known):				
Project Manager (Team Leader) (name/code/telephone/email): Jessica Torrey, 86-68540, 303-445-2376, jtorrey@usbr.gov	Client Group (or Region): Lower Colorado Region				

Design Data

Design Data

- Structure dimensions
- Operation
- Drawings/photos
- Water quality data
- Soil samples
- Dissimilar metals
- Electrical isolation
- Coating condition
- Availability of power

Parker Dam Spillway Gates

Design Data:

- Gate Size: 50 ft x 50 ft
- Riveted Construction
- Slide Gate Style (Stoney)
- Water line ~3-5 ft from top of gate
- Mudline ~ 2 ft from bottom of gate
- Water Specific Conductance (2008-2010)= 1000 μS/cm

Design Data – Gate Inspection Dec 2014

Dec 2014	
Surface	0.418V VS C
5++	0.4101
10ft	D.403V
20F+	D_398V
30ft	O.397V
	(ALE ELM)

Gate 5

more rusting on the form of this gute

Design Data – Dive Inspection Feb 2015

CP System Design

CP System Design

- Determine metal surface area
 - Each gate ~6600 rivets; add ~120 sq. ft. (~5%)

Component Name	SA (ft²)	SA (m²)		
upstream skinplate	2500	232		
rivets flat SA	175	16		
rivets dome SA	298	28		
skinplate minus rivet flat	2325	216		
skinplate w/ dome rivets	2622.5	243.6		

CP System Design (cont.)

- Rectifier current requirement
- Current distribution calculations

For steel:

- Achieve -0.850 V_{CSE}
- No more negative than -1.100 V_{CSE}
- Anode selection and cable sizes

Calculations									
System			Anode						
Safety Factor	I _{cp} (max design current for all structures)	Anode Style	L _{lineal} (Length of exposed area)		w (width of exposed area) or diameter		SA _{anode} (exposed surface area of anode)		
	Α		in	m	in	m	in²	m ²	
2.0	1.162	2.5/50	20	0.500	1.000	0.025	60.5	0.039	
		2.5/100	39	1.001	1.000	0.025	121.0	0.078	
		2.5C/FW20YR	20	0.508	0.750	0.019	47.1	0.030	
		4C/FW20YR	24	0.610	0.750	0.019	56.5	0.036	

CP System Design (cont.)

Anode mounting design

- Feasibility:
 Anodes hanging from suspended wire system
- Final:
 Slotted PVC mounted to concrete piers

CP System Design (cont.)

Conduit size & path – diam. based on # of cables

CP Installation Upcoming

- Dates TBD
 - Delays during Summer 2020 due to COVID circumstances

Trip #1: installation and initialization

 Trip #2: monitoring and training

Conclusions

• CP design process – case by case

- Work with client
 - Challenges and design changes

Acknowledgements

- John Steffen and Parker Dam staff
- TSC Materials and Corrosion Laboratory (8540), Plant Structures (8120), and Concrete & Structural Laboratory (8530)

Daryl Little dlittle@usbr.gov 303-445-2384

Cathodic Protection Case Study: Mni Wiconi Core Pipeline

Daryl Little, Ph.D.

Materials Engineer, Materials & Corrosion Lab

Cathodic Protection of Pipelines

Webinar Objectives:

- Review of Field Data Collection Procedures
- Data Analysis

CP System Evaluation Process

Daryl Little, Ph.D. Materials Engineer dlittle@usbr.gov 303-445-2384

- 1. Contact us
- 2. What are your needs?
 - a) Testing
 - b) Inspection
 - c) Repair services
 - d) Training
- 3. What we need from client
 - a) Scope of work or problem
 - b) Photos
 - c) Historical data
 - d) Drawings
- 4. Final products
 - a) Report including data, photos, observation, and recommendations/conclusions
 - i. Some system repairs may be performed during the survey
 - b) SOP for testing CP system

Mni Wiconi Core Pipeline - CP

• Mni Wiconi Core Pipeline

- Delivers water from the Missouri River west to Kadoka, SD
- Provides water to over 39,000 people
- ~123 miles of mostly 26-in diameter welded steel pipe
- ~94 miles of PVC pipeline

Cathodic protection

- Welded Steel Pipeline ICCP
 - 10 Rectifiers approximately evenly spaced
 Over 300 test stations
- PVC pipeline GACP
 - Zinc anodes on metallic fittings

System testing

- MCL was approached to evaluate the CP system in 2014.
- The system had not been tested in several years.

Mni Wiconi CP System Testing

- MCL was approached to evaluate the CP system in 2014.
 - The system had not been tested in several years and data should be reviewed by MCL personnel approximately every 5 years.
- Annual testing is crucial to ensure the system is both operational and provides adequate protection.
- Utilizing Reclamation resources was desirable in this situation to avoid additional costs by contracting the work out.

Test Stations

CP System Testing

Rectifier Data Collected

- Data collected during the survey is crucial to determine the efficiency of a system.
- Rectifier Data needs include:
 - Condition (broken wires, vegetation overgrowth, insect infestation)
 - Rectifier information (rating, model, style, etc.)
 - Tap settings
 - Voltage output using meters and portable voltmeter
 - Current output using meters and portable voltmeter
 - Current output of anodes using portable voltmeter if possible

Amperes meter

Shunt for current measurements

Test Station Data Collected

- Data collected during the survey is utilized to determine the efficiency of a system.
- Test stations are a crucial component for performing these types of surveys.
- Test Station Data needs include:
 - Condition (broken wires, vegetation overgrowth, insect infestation)
 - Uncorrected potential ("on" potential with system energized)
 - Polarized potential ("instant-off" potential with system interrupted)
 - Anode current output for galvanic anode systems
 - GPS coordinates and other identifying features

Test Station and Voltmeter

Reference Electrode

Data Collection Requirements

- To perform the survey the system must be interrupted briefly. This can be performed in the following manner:
 - Disconnecting the anode cable from the structure cable at the shunt for GACP systems.
 - Installing an interrupter in the output circuit of a rectifier for ICCP systems.
- Typical interruption cycle is 7 seconds on and 3 seconds off.
 - Newer data loggers can measure a faster interruption cycle.
 - It is critical to interrupt rectifiers at the same time for systems with multiple rectifiers.
- A previous webinar was given on how to test a cathodic protection system and is available.

Current Interrupter Installation

Data Logger

Review and Analysis of Collected Data

- Utilizing programs such as Excel, Origin, or equivalent program.
- Upload or input the collected data.
- Data may look like the figure below depending on the method or collection.

- On/Instant-Off potential data is then plotted versus location as shown and problem areas such as off or polarized potentials below the -850 mV_{CSE} criteria can be identified.
- The -100 mV of polarization can be used in this case due to historical data.
- Data indicates the following:
 - A difference between an on potential and an instant-off or polarized potential.
 - On potentials or uncorrected potentials are not indicators of adequate protection.

- Data can be separated by test station or location and the critical information such as the polarized potentials as shown.
- Not all test stations may be tested every year due to the condition of the test station, broken wires, access, etc.
- This is not an issue when looking at the overall system.
- It is ideal to locate them and test them each year if possible.

Inaccessible due to flooding

- Data plotted for multiple years aids in determining any trends in the readings.
 - Effect of rectifier output changes.
 - Effect of a wet or dry season.
 - Which test stations were not tested and how often.
 - Gaps indicate missing, broken, or untested test stations.
 - Significant spikes could indicate a bad measurement, poor cable connection at the pipe.
- Data indicates the following:
 - Locations with polarized potentials between -850 mV_{CSE} and -1100 mV_{CSE} are adequately protected.
 - The polarized potential at TS238 is close to the native potential and a change in values was not observed during the interruption cycle.

Conclusions - ICCP

- The low polarized potentials observed at the beginning of the pipeline were low due to broken bond cables discovered in a vault.
 - Cables were reattached and the next annual survey should indicate higher polarized potential readings.
- The rectifier output should be increased, and the location monitored or investigated at locations with polarized potentials more positive than -800 mV_{CSE}.
- The rectifier output should be reduced where polarized potentials are more negative than -1100 mV_{CSE}.
- TS238 should be investigated for a possible short to steel in concrete or other issue.

Data Analysis - GACP

- Galvanic anode cathodic protection data collected on non-metallic pipe is shown in the graph.
- Data plotted for multiple years aids in determining if an anode is nearing its life and when to replace.
- Data indicated the following:
 - Most locations were adequately protected in accordance with the -0.850 V_{CSE} criteria.
 - TS338 and TS340 indicate inadequate protection.

Conclusions - GACP

- It is recommended that the anodes at TS338 and TS340 be replaced as soon as possible.
- All locations should be closely monitored yearly due to the anode replacement required at the test stations.

Materials and Corrosion Laboratory Staff - 8540

Cathodic Protection

Chrissy Henderson, Ph.D. chenderson@usbr.gov 303-445-2348

Matt Jermyn mjermyn@usbr.gov 303-445-2317

Daryl Little, Ph.D. dlittle@usbr.gov 303-445-2384

<u>David Tordonato, Ph.D., P.E.</u> dtordonato@usbr.gov 303-445-2394

Grace Weber
GWeber@usbr.gov
303-445-2327

Hazardous Materials

Lise Pederson, P.E. Ipederson@usbr.gov 303-445-3095

Kevin Kelly, Ph.D KKelly@usbr.gov 303-445-7944

Group Manager

Jessica Torrey, Ph.D., P.E. jtorrey@usbr.gov 303-445-2376

Protective Coatings

Brian Baumgarten bbaumgarten @usbr.gov 303-445-2399

Carter Gulsvig cgulsvig@usbr.gov 303-445-2329

Bobbi Jo Merten, Ph.D. bmerten@usbr.gov 303-445-2380

Rick Pepin, PCS rpepin@usbr.gov 303-445-2391

Stephanie Prochaska sprochaska@usbr.gov 303-445-2323

Allen Skaja, Ph.D., PCS askaja@usbr.gov 303-445-2396

